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Starting with a canonical symplectic structure defined on the cotangent bundle T*G we derive, via Dirac hamiltonian reduction, 
Poisson brackets (PBs) on an arbitrary infinite-dimensional group G (admitting central extension). The PB structures are given 
in terms of an r-operator kernel related to the two-cocycle of the underlying Lie algebra and satisfying a differential classical Yang- 
Baxter equation. The explicit expressions of the PBs among the group variables for the (N, 0) for N= 0, 1, ..., 4 (super- Virasoro 
groups and the group of area-preserving diffeomorphisms on the torus are presented. 

1. Introduction 

In the years following the discovery of the quan tum group structures in the context of the quan tum reverse 
scattering method [ 1 ] (for a recent review, see ref. [2] ), their significance has been constantly increasing in 
various areas of theoretical physics ranging from completely integrable models [ 3-5 ] to conformal field theory 
[6,7] and quan tum group gauge fields [8]. Already in the original papers [9] it was realized, that quan tum 
groups are int imately related to Poisson bracket (PB) structures on ordinary Lie groups in a manner  reminiscent 
of the relation between classical hamil tonian  systems on symplectic manifolds and their quan tum analogues. 

Recently there have been a lot of discussions of PB structures on finite-dimensional  semisimple Lie groups 
and their Kac-Moody  generalizations, as well as their subsequent quant izat ion [ 10]. In particular, the quan- 
tized group elements were identified with the chiral vertex operators in D =  2 conformal models. 

In view of the fundamenta l  role played by PBs on ordinary groups, we propose in section 2 of the present 
letter a general geometric formalism for deriving PB structures on arbitrary infini te-dimensional  groups with 
central extension. This formalism is based on the Dirac approach to the constrained hamil tonian systems. As a 

particular application of our method we obtain in sections 3 and 4 the fundamental  PB relations between the 
group variables of the Virasoro group, N-extended super-Virasoro groups as well as s~'D'~lff (T 2) - the group of 
area-preserving diffeomorphisms on the torus. The latter are the underlying symmetry groups of (N, 0) D =  2 
induced ( super- )gravity [ 1 1 ] and the toroidal membrane  in the light-cone gauge [ 12], respectively. 
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2. General formalism 

It is a basic result o f  classical differential geometry [ 13 ] that the cotangent bundle T*.# of  any riemannian 
manifold .h' possesses a symplectic structure on itself, i.e., any T*./¢' can be interpreted as a phase space of  a 
classical hamiltonian mechanics with ~/g being the configuration space. Taking ~¢[= G, where G is a Lie group, 
and denoting a generic point o f  T*G as ( U, g),  one has the following canonical symplectic two-form: 

£2( U, g) = - d (  ( U] Y(g)  ) ) + lc2 (.f (Y(g)  )l Y(g)  ) ( 1 ) 

(this is a generalization to centrally extended groups o f  the symplectic form used in ref. [ 7 ] ; cf. ref. [ 14 ] ). 
In eq. ( 1 ) and below, the following notations are used. The canonical momentum U belongs to the cotangent 

space T~G at the point geG.  T~G can be identified with the dual space .~-f* of  the Lie algebra .~ of  G. The 
"pairing" between .~ and f-q* is given by the bilinear form ( UI ~) for any U~ ~c#*, ~e ~.~. Y (g )  in ( 1 ) is the fun- 
damental if-valued Maurer-Car tan  one-form on G satisfying: dY(g)  = ½ [ Y(g) ,  Y(g)  ]. In the last term in ( 1 ) 
we introduced the linear operator ,f: ~ - ,  f~ which defines a nontrivial two-cocycle on the Lie algebra if: 

where 2 is a numerical normalization constant. Eq. (2) yields a nontrivial central extension 3 =  fq®N of  5q and, 
correspondingly, a central extension .~*= ~ ' ~  of  the dual space fq*. The parameter c in eq. (1) represents 
"central charge" of  3*. 

In what follows, we shall also need the explicit form of  the adjoint and the coadjoint actions of  G and 3 on 
the elements (4, n ) e 3 and ( U, c) e 3", respectively [ 14 ]: 

A,d(g) (~, n ) =  (Ad(g)~,  n + 2 ( S ( g - ' ) l ~ )  ) ,  

fid(~,, nl)(~2, n 2 ) -  [(~,,  n~), (~2, n2)]=(ad(~ , )~2 ,  - 2 ( g ( ~ , )  1~2)) ,  

Ad*(g) ( U, c) = (Ad*(g) U+c2S(g ) ,  c ) ,  

~.d*(~, n ) (U,  c ) =  (ad*(~)U+c2g(¢) ,  O) .  

(3) 

(4) 

(5) 

(6) 

Here Ad(g)  and ad(~) [Ad*(g) and ad*(~) ] denote the ordinary (co)adjoint  actions of  G and ~ without the 
central extension ~ 

In eqs. ( 3 ) and ( 5 ) there appears another basic object - a nontrivial (~-valued one-cocycle S(g)  on G, which 
satisfies the relations ~2 

S(g,  g2 ) = S(g,  ) + Ad* (g,)S(g2 ) ,  ( 7 ) 

~(~)= d S(e'¢),=o" (8) 

Let us note the following important  relation between the group one-cocycle S(g)  and the fundamental  Maurer-  
Cartan one-form Y(g): 

dS(g)  = a d * ( Y ( g )  )S (g)  + g ( Y ( g )  ) ,  (9) 

and also the fundamental  formula of  Kirillov [ 15 ] expressing the group cocycle S(g)  in terms of  the Lie-algebra 

cocycle operator g: 

~' They read explicitly: Ad(g)(~)=g~g-l, ad(~ )~2= [~, ~2] and (Ad*(g)Ul~) = ( UlAd(g ~)~), (ad*(~)Ulrl) = - (Ulad(~)r/). 
~2 The physical interpretation of the .~6-cocycle d is that of "anomaly" of the Lie algebra [i.e.. existence of a c-number term in the 

commutator (4) ], whereas the group cocycle S(g) is the integrated "'anomaly", i.e., the "anomaly" for finite group transformations 
[ see eqs. ( 3 ) and ( 8 ) ]. In the particular case of KM groups, S(g) = 3~gg- 1 and Y(g -t ) = _g-I dg are combinations of the left and 
right KM currents J+ =O+gg- 1 j_ =g- ~ O_g. 
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ad*(~)S(g)  +g(~)  = A d * ( g ) ~ ( A d ( g - ' ) ~ ) ,  V~s f~, g e G .  (10) 

Remark. The group- and algebra-cocycles S(g)  and g(~) can be generalized to include trivial (coboundary)  
parts: 

X(g)  - Z ( g ;  ( Uo, c) ) =c2S(g) + Ad* (g) Uo - Uo, ( 11 ) 

6"(~) =d(~;  (Uo, c))=ad*(~)Uo+c2~(~)= d x(e'~) , (12) 
K i t  t = O  

where Uo is an arbitrary point in the dual space f~* ~3. The generalized cocycles ( 11 ) and (12) satisfy the same 
relations as ( 7 ), (9) and (10).  

It is now easy to write down explicitly the Poisson brackets (PBs) among the canonical momenta  and coor- 
dinates ( U, g)  corresponding to the symplectic two-form ( 1 ): 

{ ( U I ~ ) ,  (U l r l ) }pB=(ad*(~)U+c2g(~) lq ) ,  (13) 

{ ( U[ ~),  ~ ( g )  }pB = Lcq~(g) = d q~(e,¢ g ) ,=o '  (14) 

{qbl (g),  qb2 (g) }pB = 0 .  ( 15 ) 

Here ~, q are arbitrary elements of  f#, and q~(g) together with qDl.z(g ) are arbitrary smooth functions on G. In 
eq. (14) L¢ denotes the left Lie derivative along the vector field corresponding to ~e ft. 

In some cases below it will be useful to introduce a specific basis {T"} of  the Lie algebra N and its dual basis 
f • ~* T ,  } in ~4 and use the component  expansions 

[T" ,TP]=f~.aT ' ; ,  ~ = ~ T  ~', U=U'~T *, < 2 ( ¢ ) [ q > = G 2 " a r / a  (16) 

for arbitrary elements ~, r/¢ f#, Uz ~,e* and an operator ){: %~ .~¢". 
Let us now consider a reduction of  the original phase space T*G by the set of  the following Dirac constraints: 

5u¢( U, g )=  ( A d * ( g - ' ) [ U - X ( g ) -  Uo] ]~> = 0 ,  (17) 

where S(g )  is the general one-cocycle on G defined in ( 11 ). Due to the cocycle property o f S ( g )  [cf. eq. (7) ] 
we have the PBs 

{( U[~>, ( Z ( g )  [t/>}p a = ( a d * ( ~ ) S ( g ) + 6 ( ~ )  It/> , (18) 

which yields the PB algebra o f  constraints: 

( 5v¢( V g),  ~u,,( U, g) }PB = 5vt¢,,l ( V g) - (6(~)  It/) . ( 19 ) 

Recalling eqs. (5) and ( 1 1 ), one observes that the reduced phase space (i Co,,-~, 

(i c,,,,~ - {( U, g)~T*G;  U=  Uo + X ( g )  = Ad*(g) Uo +c2S(g)} ,  (20) 

defined by the set o f  Dirac constraints (17) is a coadjoint orbit [ 13] of  (the central extension o f )  G passing 
through the point (Uo, c) on the dual space ~Tf*. Clearly 6 ico,c) ~ G/Gstat where Gstat is the stationary subgroup 
of  the point ( Uo, c) with respect to the coadjoint action (5) 

G . . . .  = { k e G ; X ( k ) = O } .  (21) 

~3 Sometimes we shall suppress for brevity the dependence on ( Uo, c) ofX(g) ( 11 ) and 6(() ( 12 ). 
~44 ( T~ I Tfl~ =(~ and the Lie-algebra indices a are of the form: a=  (A; (x~, ..., xp) ), where A are discrete indices related to finite- 

dimensional Lie algebras (as in the case of Kac-Moody algebras) and (x~, ..., xp) are continious parameters. 
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The Lie algebra corresponding to Gstat is 

ffs,a, - {~oe if; O(~o) = 0 } .  (22)  

From (22) we deduce that the Dirac constraintsT¢( U, g) (17) are combinat ions of  second-class T± = T~± ( U, 
g) and first-class T o -  T¢o( U, g) ,  where ~=~o+~± with ~oe ~(~stat and ~e !~\ ~sta,' 

Let us now compute  the Dirac brackets (DBs) between smooth functions q)1,2 (g), i.e., the PBs between q~u2 (g) 
on the reduced phase space #~ ~o,,.) (20). Taking into account ( 13 ) -  ( 15 ), ( 18 ), ( 19 ) and (22) we find 

{~1 (g),  qb2(g)}DB ={qb, (g),  T"(U,g)}pB(6ZJ),/~{ T~(U,g),  qb2(g)}pB=-r,~Ra~,(g)R/3~2(g).  (23) 

Here, for simplicity, we have used the component  notat ions (16).  Further 

R¢clg(g)=~.R'~(g) =LAd(g)¢fl)(g)= ~ cl-)(g e'¢) ,=o (24) 

denotes the right Lie derivative along ~ and 

r . ~ =  ( 6 ~ ) . p  (25) 

is the operator  kernel of  the inverse operator  o f  the cocycle operator  6: ~--. ~,* (12) restricted to the nonzero- 
mode subspace ~ \  ff~t~t. 

It is a simple exercise to show that the Jacobi identities for the Dirac brackets (23) imply the following 
equation obeyed by the kernel r .a  (25) ~s: 

r.afae ~'r~p + rpafa~ y r~,~ + rBaf~,;' r.e. = O . (26) 

Let us introduce the matrix r -  r.aT"® Tae ~® ~ and denote by r (12) ..~ r .aT.® Ta®{e o#(~) ® 41(~q) ® 41(~) 
the imbedding of  re if® ff into o//(~) ® o//(if) ® J/l(f#) and similarly for r ~ ~3) and r (23), where o/g(~) denotes 
the universal envelopping algebra of  C~. Then one can rewrite the Jacobi identities (26) in the form of  the well- 
known classical Yang-Baxter  equation (CYBE)  [ 1 ]: 

[r  ('2), r(13)] + [r (12), r(23)] + [r (13), r(23)]_--0 , with r(~2)= - r  (2') . (27) 

The identification (25) of  the inverse of  the r-matrix, satisfying CYBE (27) ,  with the two-cocycle on the un- 
derlying Lie algebra appeared for the first t ime in ref. [ 4 ]. 

Note that the group cocycle Z ( g )  ( 11 ) generates left group translations on the orbit £i t,o,c) (20) as it follows 
upon substituting q)Lz(g) = (~(g)1~],2> into (23) (cf. ref. [ 14] ). 

One can impose another  set o f  Dirac constraints: 

qa¢( U , g ) -  ( U_Uolg> =O (28) 

and consider a reduction of  the original phase space T *G with respect to (28) instead of  (17) .  Calculation of  
the new DBs gives 

{qb, (g) ,  ~b2 (g) } ~'~ =r, a L ~  (g)La~2(g) ,  (29) 

with left Lie derivatives on the RHS. Eqs. (23) and (29)  yield the fundamental  PBs of the corresponding 
geometric actions W[g] and l~[g]  on the reduced phase spaces Q~'o.,) (20) and ~;~t.o.,.~ defined by the Dirac 
constraints (17) and (28) ,  respectively ~6. It is easy to show that l~[g]  = - W [ g - '  ], i.e., l~[g]  is the Legendre 
t ransform of  Wig] [ 16] where 

~s We use here the commutation relation ReR,-R,tR~=Rt¢,, j for the right Lie derivative. 
,6 The action on the original "large" phase space T*G with symplectic structure ( 1 ) is W l U, g] = f d- hg2( U, g). 
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W[g I = - f [ ( X ( g )  I Y (g)  ) - ½d- ' (  ( ( r ( Y ( g )  )l Y(g)  ) ) ] • 
d 

25 June 1992 

(30)  

3. Applications: Poisson bracket structures for (N, 0) D = 2 (super-) gravities 

Let us first apply the general formal ism of  section 2 to the case of  Virasoro group. Its group elements g~- F ( x )  
are smooth d i f feomorphisms of  the circle S ~. Group  multiplication is given by composi t ion of  diffeomorphisms 
in inverse order, e.g., gl "g2 = F2 oFl ( x )  = 1=2 (FI ( x ) ) .  The basic objects in ( 3 ) -  (6) have now the following ex- 
plicit form (see, e.g. ref. [ 17 ] ): 

A d ( F ) ~ =  ( O , F ) - ~ ( F ( x ) ) ,  A d * ( F ) U =  ( O x F ) 2 U ( F ( x ) ) ,  

ad(~)t / - -  [~, t/] =~0,_t / -  (0,.~)q, a d * ( ~ ) U = ~ O x U + 2 ( O , ~ ) U ,  (31) 

~(¢) = 03¢ S ( F ) -  03F 3 (O2.F~ 2 
' 0 , ~  2 \ O , F J  " (32) 

Here S ( F )  is the well-known schwarzian. 
Using (32) it is easy to calculate the right Lie derivative (24):  

RcqO[F]= f dx  ¢ ( x ) R ,  cIo[f] R,.O[F]_= 1 8q~[f]  
' 0yF 6F(y )  .,,=r-,(~) " (33) 

The r-matrix IIr,,ll is now represented by an operator  kernel r(x, y):  

r = r ~ p T ~ ® T P =  J dx  dy r(x, y ) , ~ ( x ) J J ( y )  , (34) 

where {,~(x)} indicate a basis in the Virasoro Lie algebra ~7 
In what follows, for simplicity, we will put to zero the generic point Uo of  the dual space ~* which parametrizes 

the reduced phase space (20)  and the inverse r-operator (12) .  In such a case the r-operator satisfies the differ- 
ential equations [cf. (26) and (25) ]: 

c ) , 0 3 , - r ( x , y ) = ~ ( x - y ) ,  r ( x , y ) = - r ( y , x ) ,  

[ r( xl , x2 ) O~2r( xz, x3 ) - O.,.2r( xl , x2 )r( x2, x3 ) ] =O , (35) 
cyclic( 1,2,3 ) 

the latter one being the CYBE for the Virasoro group. The normalizat ion constant 2 =  - 1/24~ [this is true for 
all (N, 0) (super-)  Virasoro groups] .  F rom (35) one finds 

1 
r(x, y)  = ~ [ l ( x - y ) 2 e ( x - Y )  + b o ( x 2 - Y  2) +b, ( x - y )  + b 2 x y ( x - y )  ] , (36) 

where bo, b~, b2 are arbitrary constants subject to the constraint bg-b~b2 = ~. It is easy to check that r(x, y)  
preserves its form (36) under an SL(2; N) fractional-linear t ransformation on x and y. Note that the constants 
b~ and b2 in (36)  are dimensionful.  In what follows, we shall choose them equal to zero. 

The general DBs for smooth functions of  the group elements (23) now specialize to 

{(ibl [F] ,  q~2 [F] }DB = f 
8q~l 8q~2 

-- d x d y ~ - - ~ r ( F ( x ) , F ( y ) )  8F(y)  " (37) 

,7 With commutation relations [.}-(x), ,~-(y) ] = 2.~(x) Ox~(x-y) + O~.}-(x)~(x-y) - (1/24~)03~(x-y). 
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In particular, accounting for (36) we reproduce the result of refs. [5,2] for the fundamental brackets between 
the Virasoro group elements: 

1 
{F(x), F(y)  }DB = - r ( F ( x ) ,  F(y) ) = - ~c2 { [F(x) - F ( y )  ]2e(x-y)  + [F2(x) - F 2 ( y )  ]}. (38) 

Let us now generalize this result to the case of (N, 0) extended super-Virasoro groups for any N~< 4. First, let 
us recall the explicit form of the basic objects in a manifestly (N, 0) supersymmetric formalism [ 18 ]. The points 
of the (N, 0) superspace are labeled as ( t, z), z -  (x, 0 ~), i = 1, ..., N. Taken in a specific basis { Y (z) } the (N, 0 ) 
super-Virasoro Lie algebra has the form n8 

[,)(z, ), ,)-(z2) } = ( -  1 )~(2 - ½N)Y(zL ) 0g l  (~ ('%') (*~ I --22)"4- (-- 1 )XO.,., .~7(Z, )~(N)(Z 1 --Z2) 

• 1 i x(x-2~ D'vO3--NS(x)(Zl --Zz) (39) + 11 D , ~ ( z I  ) D i g  (``') ( z l  - z 2 )  --  ~ . • 

The group elements are given by superconformal diffeomorphisms: 

z -  (x, OJ)~ 2 = - (F(x, OJ), 0' (x ,  0J)) (40) 

obeying the following constraints: 

[YF-- i0kIY0k=0,  IY0tDk0l--dJk[D0]2,=0,  [DO]7~.-~ , N1 D'"0" D,,, 0,, . (41) 

These constraints are imposed by requiring covariance of the super-derivative D J: D j-, (IYOk) I3 k under (40). 
The (N, 0) supersymmetric analogues of (32) read 

Ad(2)~= ([D0]Z,) - '  ~ ( 2 ( z ) ) ,  Ad*(2)B= ([D0]~,) 2- 'W2B(Y(z)) ,  

ad(~)q-  [~, q] =~O,.q- (0,.~)q- ½i D~.~Dkq, ad*(~)B=~0,.B+ ( 2 - I N ) ( O ~ ) B - ½ i  Dk~DkB, 

~(~) = ix(N-2)D~'0~ ,v~. (42) 

The associated .(#'-valued group one-cocycles S~,(2) coincide with the well-known [ 18 ] (N, 0) super-schwarzians. 
Let us now derive the explicit form of the Dirac brackets (23) for the (N, 0) super-Virasoro group. First, we 

find the action of the right Lie derivative: 

R~[2] = f (dz)¢(z)R_-q)[2], 

R:qO[ZI - (  1 [ (1-½N) . ~ 8(/) ) (43) ([D'651~)2 0 " 2 - ( - 1 ) " 2 ) ' ½ ~ D i 2 D ' k ]  oLt-  ) : . :2  , , : ,  

The (N, 0 ) supersymmetric r-operator kernel satisfies [ cf. ( 25 ), ( 42 ) ] 

i x ( x - 2 ) . ~  r ~ X n 3 - , ' %  t ~ G/L K'Jl . . . .  "N~'~I '  Z2 ) = ~ (N)(2.1 - -  Z2 ) ~- (~(A- 1 - -X2 ) d  (N') ( 01 - -  0" ) ( 4 4 )  

and obeys the (N, 0) supersymmetric CYBE: 

[rN(Zl,Z2) Ox2rN(z2, z3)--Ox2rN(zl,z2)r,¢(z2, z3)--li DJ2r~,(zl,z2) D2jr,v(Z2,Z3) ]=O. ( 4 5 )  
cyclic( 1,2,3 ) 

The general solution of (44), accounting for (45), reads (as in the N=0 case, we discard the terms with dimen- 
sionful constants) 

~8 The following superspace notations are used: D'=&O0,+iO'O~, D x-= ( 1/N! )e,..,,,,D~'...D ~-'. 
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1 
r,,(zl, z2 )  = ~ [ G ( x  I - x  2 --ioko2k) +X 2 --X~ --2iO~02k(Xl -}'X2) ] . (46) 

Now, inserting the explicit expressions (43)  and (46)  into the general DB formula (23) ,  one obtains the follow- 
ing fundamental  brackets for the (N, 0) super-Virasoro group parameters:  

{F(z, ), F(z2) }DB = -- ( 1 -- ½(9~ I) , /)  ( 1 -- ½~D2k)rx(2(z ,  ), 2(z2) ) ,  

{F(z, ), 0k(Z2)}Dn = ½i( 1 -- ½(9~ 15,:)152,rN(2(z, ), Z(z2)  ) ,  

, ~ k ~ :  r ,#-, , {Ok(z , ) ,  O:(Z~)}DB = ~ ~ 2 x t " . tZ , ) ,  2 ( Z 2 ) ) ,  

(47) 

(48) 

(49) 

where the (N, 0) supersymmetr ic  r-operator  kernel rN( , ) is given by (46) and the following notation was used: 

I~),2 ~ ~ + i &  Dr (50) 
(gk ~ t~k(:l,2 ), - ~  /"( Z 1,2 ) 

We note that ( 4 7 ) -  ( 49 ) are compatible with the superconformal constraints (41 ). In the particular cases N= 1,2, 
the PB-algebra ( 4 7 ) - ( 4 9 )  was derived in ref. [ 19]. 

As a consequence of  the fundamental  brackets (49) we get the following simple free-field brackets for the 
unconstrained (N, 0) superfield ¢(z) :  

O(z) ---In([D(912,(z) ) , 

1 
{(~I(Zl ),  0 ( Z 2  ) }DB = ~  e (X l  - -X2  - -  i0]02~-) . (51 ) 

From (51) we easily find the geometric action on the reduced phase space ¢(c0.<) - the coadjoint orbit of  (N, 
0 ) super-Virasoro, which produces the fundamental  brackets ( 4 7 ) -  (49) 

W,,[21 =iN(N-2)C2 f dt (dz)  3, (ln[D(g]~;) D'~Ol,.-x ( [D(~]~, ) .  (52)  

For N =  1, 2 (52) reduces to the known Polyakov geometric actions for N =  1, 2 induced D = 2  supergravity 
[20,14 ] which are local in ordinary space. For N =  3, 4, however, the super-Virasoro geometric action (52) is 
nonlocal with respect to x. In order to have both local and unconstrained off-shell (N, 0) D = 2  superspace 
formulat ion when N>~ 3, one needs superfields defined on extended harmonic  superspace [21 ]. 

4. Application: Poisson brackets for the Wess-Zumino action of toroidal membrane 

In ref. [ 16 ] it was shown that the Wess -Zumino  (WZ)  anomalous  effective action for the toroidal membrane  
in the light-cone gauge is precisely the geometric action on a generic coadjoint orbit of  S ~  (T z) [22].  The 
latter is the centrally-extended group of  area-preserving dif feomorphisms on the torus T 2 [ 12 ]. The elements of  
SDiff  (T 2) are described by smooth  di f feomorphisms T2~x - (x ~, x 2) --)Fi(x) e T  2 ( i =  1, 2), such that 

det OF' = ~x:  1 or ek:OkF'O:FJ=e o. (53) 

The Lie algebra o f ~ f  (T  2) reads 

[ f : ( x ) ,  f,O(y)] = _ c o  Oi l (x )  O : ~ t 2 ) ( x - y ) - a ' O ,  d t2 ) (x -y )  , (54) 
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where a = (a l, a 2 ) are the "central  charges" [ 12 ]. 
Now, the r-operator kernel for SDi'--(f (T 2) obeys the equations [ cf. ( 35 ) ] 

aiO' , r (x ,y )=~(Z)(x-y) ,  ~ ~ktO~2r(xl,x2) 0/,2r(x2 x 3 ) = 0 ,  (55) 
cycl ic(  1,2,3 ) 

where the second equation in (55) is the CYBE for SDi"--"~f (T2) .  The solution to (55) reads 

1 
r(x, y) = ~ e(x, -Ylt )6(x+ - y ~  ) , ( 56 ) 

where we introduced the longitudinal and transverse projections of  a two-dimensional  vector C along a: 

a'C, ai%C j 
C , I -  x /~5,  C l  - xfa2 . (57) 

Plugging (56) into (23) we get 

a 
r ( F i  Fz)r F( . . . .  ) ' {F'(x, ), FJ(X2)}D, = t~a-ejt 0F~ OF~ ' (58) 

In particular, for the "longitudinal"  group variables F, (x)  = (a ' / x /a  5 )F , (x)  we obtain the quadratic PBs for 
SDi"-"~f (T 2 ): 

1 OFit(x) OFil(y) 02 
{FII(x),FII(y)}DB=- 2-~t3(Xll-Ytl) 0x u cq),il Ox2L 6 ( x i  - Y i )  • (59) 

Eqs. (58) ,  (59) are the PBs corresponding to the WZ membrane  action [22,16]: 

W[F] = - ~ f dt d2x(akekFl)%F ' O~F j , (60) 

where F a r e  constrained by (53).  

5. Outlook and discussion 

It was shown in ref. [9] that the classical " l imi t"  of  a quantum group is a Lie-Poisson group, on which the 
PB structure is given by a sum of  PBs (23) and (29):  

{q), (h), (P2(h)}Lp =r,/j(L"CI)~ (h)L/~CI)2(h) -R"CI)~ (h)R~cl)2(h) ) , heG . (61) 

Recently, a new approach has been proposed in ref. [ 7 ] for constructing Lie-Poisson structures (61 ) and their 
subsequent quantizat ion starting with the phase space T*G.  This formalism uses a special change of variables 
which, when generalized to arbitrary infinite-dimensional groups, reads (in notations of  section 2) as (U, 

g ) ~ ( g + , g  , Uo, k0): 

g=g+kog_, U = Z ' ( g + ; ( U o ,  c ) ) + U o .  (62) 

Here g+ belongs to the right coset space G/GsLat-  ~ ((iuo,,~ [i.e., the coadjoint orbit (20) ], g_ belongs to the left 
coset Gstat \ G, ko e Gstat while Uo~ f~t,t ~ ~¢* [i.e., the dual space of  the stationary subalgebra ~tat (22) ]. Using 
the formalism of  section 2 it can be shown that g+ and g_ satisfy PBs of the type (23) and (29) ,  respectively. 
Fur thermore  ( Uo, ko) constitute a pair of  canonically conjugated dynamical  variables. 

In the case of  KM and finite-dimensional groups [2,7] the group element h=-g_kog+ can be shown to obey 
the required Lie-Poisson structure (61) ,  i.e., the classical prerequisite of  a quantum group. It would be inter- 
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est ing to es tabl ish this  p roper ty  for  general  i n f in i t e -d imens iona l  groups.  N o t e  in this con tex t  that  (62 )  p rov ides  

an ex tens ion  o f  no t ion  o f " c h i r a l "  spl i t t ing in D =  2 con fo rma l  mode l s  to h igher  d imens iona l  mode l s  wi th  infi- 
n i t e -d imens iona l  N o e t h e r  s y m m e t r y  groups.  

We wou ld  l ike to e m p h a s i z e  that  the  m e t h o d  o f  h a m i l t o n i a n  r educ t ion  o f  T*G (sec t ion  2 ) a l lowed us to de r ive  

in a sys temat ic  and  general  way the  f u n d a m e n t a l  PBs (23 )  for  geomet r i c  ac t ions  W[g] (30) on coad jo in t  orbi ts  

o f  a rb i t ra ry  i n f i n i t e -d imens iona l  groups.  

The re  are several  in te res t ing  re la ted  p r o b l e m s  which  can natural ly  be a p p r o a c h e d  by our  m e t h o d  and will be 

deal t  wi th  elsewhere.  O n e  o f  these p r o b l e m s  is the unde r s t and ing  in a m o d e l - i n d e p e n d e n t  way o f  the  role o f  the 

" h i d d e n "  Gstat (21 )  s y m m e t r y  in classical exchange  algebras. 
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